Logo Search packages:      
Sourcecode: llvm version File versions  Download package

ScalarReplAggregates.cpp

//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation implements the well known scalar replacement of
// aggregates transformation.  This xform breaks up alloca instructions of
// aggregate type (structure or array) into individual alloca instructions for
// each member (if possible).  Then, if possible, it transforms the individual
// alloca instructions into nice clean scalar SSA form.
//
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
// often interact, especially for C++ programs.  As such, iterating between
// SRoA, then Mem2Reg until we run out of things to promote works well.
//
//===----------------------------------------------------------------------===//

#define DEBUG_TYPE "scalarrepl"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
using namespace llvm;

STATISTIC(NumReplaced,  "Number of allocas broken up");
STATISTIC(NumPromoted,  "Number of allocas promoted");
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
STATISTIC(NumGlobals,   "Number of allocas copied from constant global");

namespace {
  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
    static char ID; // Pass identification, replacement for typeid
    explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
      if (T == -1)
        SRThreshold = 128;
      else
        SRThreshold = T;
    }

    bool runOnFunction(Function &F);

    bool performScalarRepl(Function &F);
    bool performPromotion(Function &F);

    // getAnalysisUsage - This pass does not require any passes, but we know it
    // will not alter the CFG, so say so.
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
      AU.addRequired<DominatorTree>();
      AU.addRequired<DominanceFrontier>();
      AU.addRequired<TargetData>();
      AU.setPreservesCFG();
    }

  private:
    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
    /// information about the uses.  All these fields are initialized to false
    /// and set to true when something is learned.
    struct AllocaInfo {
      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
      bool isUnsafe : 1;
      
      /// needsCanon - This is set to true if there is some use of the alloca
      /// that requires canonicalization.
      bool needsCanon : 1;
      
      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
      bool isMemCpySrc : 1;

      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
      bool isMemCpyDst : 1;

      AllocaInfo()
        : isUnsafe(false), needsCanon(false), 
          isMemCpySrc(false), isMemCpyDst(false) {}
    };
    
    unsigned SRThreshold;

    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }

    int isSafeAllocaToScalarRepl(AllocationInst *AI);

    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
                               AllocaInfo &Info);
    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
                         AllocaInfo &Info);
    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
                                        unsigned OpNo, AllocaInfo &Info);
    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
                                        AllocaInfo &Info);
    
    void DoScalarReplacement(AllocationInst *AI, 
                             std::vector<AllocationInst*> &WorkList);
    void CanonicalizeAllocaUsers(AllocationInst *AI);
    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
    
    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
                                    SmallVector<AllocaInst*, 32> &NewElts);
    
    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
  };

  char SROA::ID = 0;
  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
}

// Public interface to the ScalarReplAggregates pass
FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) { 
  return new SROA(Threshold);
}


bool SROA::runOnFunction(Function &F) {
  bool Changed = performPromotion(F);
  while (1) {
    bool LocalChange = performScalarRepl(F);
    if (!LocalChange) break;   // No need to repromote if no scalarrepl
    Changed = true;
    LocalChange = performPromotion(F);
    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
  }

  return Changed;
}


bool SROA::performPromotion(Function &F) {
  std::vector<AllocaInst*> Allocas;
  DominatorTree         &DT = getAnalysis<DominatorTree>();
  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();

  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function

  bool Changed = false;

  while (1) {
    Allocas.clear();

    // Find allocas that are safe to promote, by looking at all instructions in
    // the entry node
    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
        if (isAllocaPromotable(AI))
          Allocas.push_back(AI);

    if (Allocas.empty()) break;

    PromoteMemToReg(Allocas, DT, DF);
    NumPromoted += Allocas.size();
    Changed = true;
  }

  return Changed;
}

// performScalarRepl - This algorithm is a simple worklist driven algorithm,
// which runs on all of the malloc/alloca instructions in the function, removing
// them if they are only used by getelementptr instructions.
//
bool SROA::performScalarRepl(Function &F) {
  std::vector<AllocationInst*> WorkList;

  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
  BasicBlock &BB = F.getEntryBlock();
  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
      WorkList.push_back(A);

  const TargetData &TD = getAnalysis<TargetData>();
  
  // Process the worklist
  bool Changed = false;
  while (!WorkList.empty()) {
    AllocationInst *AI = WorkList.back();
    WorkList.pop_back();
    
    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
    // with unused elements.
    if (AI->use_empty()) {
      AI->eraseFromParent();
      continue;
    }
    
    // If we can turn this aggregate value (potentially with casts) into a
    // simple scalar value that can be mem2reg'd into a register value.
    bool IsNotTrivial = false;
    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
      if (IsNotTrivial && ActualType != Type::VoidTy) {
        ConvertToScalar(AI, ActualType);
        Changed = true;
        continue;
      }

    // Check to see if we can perform the core SROA transformation.  We cannot
    // transform the allocation instruction if it is an array allocation
    // (allocations OF arrays are ok though), and an allocation of a scalar
    // value cannot be decomposed at all.
    if (!AI->isArrayAllocation() &&
        (isa<StructType>(AI->getAllocatedType()) ||
         isa<ArrayType>(AI->getAllocatedType())) &&
        AI->getAllocatedType()->isSized() &&
        TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold) {
      // Check that all of the users of the allocation are capable of being
      // transformed.
      switch (isSafeAllocaToScalarRepl(AI)) {
      default: assert(0 && "Unexpected value!");
      case 0:  // Not safe to scalar replace.
        break;
      case 1:  // Safe, but requires cleanup/canonicalizations first
        CanonicalizeAllocaUsers(AI);
        // FALL THROUGH.
      case 3:  // Safe to scalar replace.
        DoScalarReplacement(AI, WorkList);
        Changed = true;
        continue;
      }
    }
    
    // Check to see if this allocation is only modified by a memcpy/memmove from
    // a constant global.  If this is the case, we can change all users to use
    // the constant global instead.  This is commonly produced by the CFE by
    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
    // is only subsequently read.
    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
      DOUT << "Found alloca equal to global: " << *AI;
      DOUT << "  memcpy = " << *TheCopy;
      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
      TheCopy->eraseFromParent();  // Don't mutate the global.
      AI->eraseFromParent();
      ++NumGlobals;
      Changed = true;
      continue;
    }
        
    // Otherwise, couldn't process this.
  }

  return Changed;
}

/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
/// predicate, do SROA now.
void SROA::DoScalarReplacement(AllocationInst *AI, 
                               std::vector<AllocationInst*> &WorkList) {
  DOUT << "Found inst to SROA: " << *AI;
  SmallVector<AllocaInst*, 32> ElementAllocas;
  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
    ElementAllocas.reserve(ST->getNumContainedTypes());
    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0, 
                                      AI->getAlignment(),
                                      AI->getName() + "." + utostr(i), AI);
      ElementAllocas.push_back(NA);
      WorkList.push_back(NA);  // Add to worklist for recursive processing
    }
  } else {
    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
    ElementAllocas.reserve(AT->getNumElements());
    const Type *ElTy = AT->getElementType();
    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
                                      AI->getName() + "." + utostr(i), AI);
      ElementAllocas.push_back(NA);
      WorkList.push_back(NA);  // Add to worklist for recursive processing
    }
  }

  // Now that we have created the alloca instructions that we want to use,
  // expand the getelementptr instructions to use them.
  //
  while (!AI->use_empty()) {
    Instruction *User = cast<Instruction>(AI->use_back());
    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
      BCInst->eraseFromParent();
      continue;
    }
    
    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
    unsigned Idx =
       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();

    assert(Idx < ElementAllocas.size() && "Index out of range?");
    AllocaInst *AllocaToUse = ElementAllocas[Idx];

    Value *RepValue;
    if (GEPI->getNumOperands() == 3) {
      // Do not insert a new getelementptr instruction with zero indices, only
      // to have it optimized out later.
      RepValue = AllocaToUse;
    } else {
      // We are indexing deeply into the structure, so we still need a
      // getelement ptr instruction to finish the indexing.  This may be
      // expanded itself once the worklist is rerun.
      //
      SmallVector<Value*, 8> NewArgs;
      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
      RepValue = new GetElementPtrInst(AllocaToUse, NewArgs.begin(),
                                       NewArgs.end(), "", GEPI);
      RepValue->takeName(GEPI);
    }
    
    // If this GEP is to the start of the aggregate, check for memcpys.
    if (Idx == 0) {
      bool IsStartOfAggregateGEP = true;
      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
          IsStartOfAggregateGEP = false;
          break;
        }
        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
          IsStartOfAggregateGEP = false;
          break;
        }
      }
      
      if (IsStartOfAggregateGEP)
        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
    }
    

    // Move all of the users over to the new GEP.
    GEPI->replaceAllUsesWith(RepValue);
    // Delete the old GEP
    GEPI->eraseFromParent();
  }

  // Finally, delete the Alloca instruction
  AI->eraseFromParent();
  NumReplaced++;
}


/// isSafeElementUse - Check to see if this use is an allowed use for a
/// getelementptr instruction of an array aggregate allocation.  isFirstElt
/// indicates whether Ptr is known to the start of the aggregate.
///
void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
                            AllocaInfo &Info) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I) {
    Instruction *User = cast<Instruction>(*I);
    switch (User->getOpcode()) {
    case Instruction::Load:  break;
    case Instruction::Store:
      // Store is ok if storing INTO the pointer, not storing the pointer
      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
      break;
    case Instruction::GetElementPtr: {
      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
      bool AreAllZeroIndices = isFirstElt;
      if (GEP->getNumOperands() > 1) {
        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
          // Using pointer arithmetic to navigate the array.
          return MarkUnsafe(Info);
       
        if (AreAllZeroIndices) {
          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
            if (!isa<ConstantInt>(GEP->getOperand(i)) ||    
                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
              AreAllZeroIndices = false;
              break;
            }
          }
        }
      }
      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
      if (Info.isUnsafe) return;
      break;
    }
    case Instruction::BitCast:
      if (isFirstElt) {
        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
        if (Info.isUnsafe) return;
        break;
      }
      DOUT << "  Transformation preventing inst: " << *User;
      return MarkUnsafe(Info);
    case Instruction::Call:
      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
        if (isFirstElt) {
          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
          if (Info.isUnsafe) return;
          break;
        }
      }
      DOUT << "  Transformation preventing inst: " << *User;
      return MarkUnsafe(Info);
    default:
      DOUT << "  Transformation preventing inst: " << *User;
      return MarkUnsafe(Info);
    }
  }
  return;  // All users look ok :)
}

/// AllUsersAreLoads - Return true if all users of this value are loads.
static bool AllUsersAreLoads(Value *Ptr) {
  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
       I != E; ++I)
    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
      return false;
  return true;
}

/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
/// aggregate allocation.
///
void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
                                 AllocaInfo &Info) {
  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
    return isSafeUseOfBitCastedAllocation(C, AI, Info);

  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
  if (GEPI == 0)
    return MarkUnsafe(Info);

  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);

  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
  if (I == E ||
      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
    return MarkUnsafe(Info);
  }

  ++I;
  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??

  bool IsAllZeroIndices = true;
  
  // If this is a use of an array allocation, do a bit more checking for sanity.
  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
    uint64_t NumElements = AT->getNumElements();

    if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
      IsAllZeroIndices &= Idx->isZero();
      
      // Check to make sure that index falls within the array.  If not,
      // something funny is going on, so we won't do the optimization.
      //
      if (Idx->getZExtValue() >= NumElements)
        return MarkUnsafe(Info);

      // We cannot scalar repl this level of the array unless any array
      // sub-indices are in-range constants.  In particular, consider:
      // A[0][i].  We cannot know that the user isn't doing invalid things like
      // allowing i to index an out-of-range subscript that accesses A[1].
      //
      // Scalar replacing *just* the outer index of the array is probably not
      // going to be a win anyway, so just give up.
      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
        uint64_t NumElements;
        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
          NumElements = SubArrayTy->getNumElements();
        else
          NumElements = cast<VectorType>(*I)->getNumElements();
        
        ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
        if (!IdxVal) return MarkUnsafe(Info);
        if (IdxVal->getZExtValue() >= NumElements)
          return MarkUnsafe(Info);
        IsAllZeroIndices &= IdxVal->isZero();
      }
      
    } else {
      IsAllZeroIndices = 0;
      
      // If this is an array index and the index is not constant, we cannot
      // promote... that is unless the array has exactly one or two elements in
      // it, in which case we CAN promote it, but we have to canonicalize this
      // out if this is the only problem.
      if ((NumElements == 1 || NumElements == 2) &&
          AllUsersAreLoads(GEPI)) {
        Info.needsCanon = true;
        return;  // Canonicalization required!
      }
      return MarkUnsafe(Info);
    }
  }

  // If there are any non-simple uses of this getelementptr, make sure to reject
  // them.
  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
}

/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
/// intrinsic can be promoted by SROA.  At this point, we know that the operand
/// of the memintrinsic is a pointer to the beginning of the allocation.
void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
                                          unsigned OpNo, AllocaInfo &Info) {
  // If not constant length, give up.
  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
  if (!Length) return MarkUnsafe(Info);
  
  // If not the whole aggregate, give up.
  const TargetData &TD = getAnalysis<TargetData>();
  if (Length->getZExtValue() !=
      TD.getABITypeSize(AI->getType()->getElementType()))
    return MarkUnsafe(Info);
  
  // We only know about memcpy/memset/memmove.
  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
    return MarkUnsafe(Info);
  
  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
  // into or out of the aggregate.
  if (OpNo == 1)
    Info.isMemCpyDst = true;
  else {
    assert(OpNo == 2);
    Info.isMemCpySrc = true;
  }
}

/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
/// are 
void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
                                          AllocaInfo &Info) {
  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
       UI != E; ++UI) {
    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
    } else {
      return MarkUnsafe(Info);
    }
    if (Info.isUnsafe) return;
  }
}

/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
/// to its first element.  Transform users of the cast to use the new values
/// instead.
void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
                                      SmallVector<AllocaInst*, 32> &NewElts) {
  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
  const TargetData &TD = getAnalysis<TargetData>();
  
  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
  while (UI != UE) {
    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
      ++UI;
      BCU->eraseFromParent();
      continue;
    }

    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
    // into one per element.
    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
    
    // If it's not a mem intrinsic, it must be some other user of a gep of the
    // first pointer.  Just leave these alone.
    if (!MI) {
      ++UI;
      continue;
    }
    
    // If this is a memcpy/memmove, construct the other pointer as the
    // appropriate type.
    Value *OtherPtr = 0;
    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
      if (BCInst == MCI->getRawDest())
        OtherPtr = MCI->getRawSource();
      else {
        assert(BCInst == MCI->getRawSource());
        OtherPtr = MCI->getRawDest();
      }
    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
      if (BCInst == MMI->getRawDest())
        OtherPtr = MMI->getRawSource();
      else {
        assert(BCInst == MMI->getRawSource());
        OtherPtr = MMI->getRawDest();
      }
    }
    
    // If there is an other pointer, we want to convert it to the same pointer
    // type as AI has, so we can GEP through it.
    if (OtherPtr) {
      // It is likely that OtherPtr is a bitcast, if so, remove it.
      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
        OtherPtr = BC->getOperand(0);
      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
        if (BCE->getOpcode() == Instruction::BitCast)
          OtherPtr = BCE->getOperand(0);
      
      // If the pointer is not the right type, insert a bitcast to the right
      // type.
      if (OtherPtr->getType() != AI->getType())
        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
                                   MI);
    }

    // Process each element of the aggregate.
    Value *TheFn = MI->getOperand(0);
    const Type *BytePtrTy = MI->getRawDest()->getType();
    bool SROADest = MI->getRawDest() == BCInst;

    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
      // If this is a memcpy/memmove, emit a GEP of the other element address.
      Value *OtherElt = 0;
      if (OtherPtr) {
        Value *Idx[2];
        Idx[0] = Zero;
        Idx[1] = ConstantInt::get(Type::Int32Ty, i);
        OtherElt = new GetElementPtrInst(OtherPtr, Idx, Idx + 2,
                                         OtherPtr->getNameStr()+"."+utostr(i),
                                         MI);
      }

      Value *EltPtr = NewElts[i];
      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
      
      // If we got down to a scalar, insert a load or store as appropriate.
      if (EltTy->isFirstClassType()) {
        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
                                    MI);
          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
          continue;
        } else {
          assert(isa<MemSetInst>(MI));

          // If the stored element is zero (common case), just store a null
          // constant.
          Constant *StoreVal;
          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
            if (CI->isZero()) {
              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
            } else {
              // If EltTy is a vector type, get the element type.
              const Type *ValTy = EltTy;
              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
                ValTy = VTy->getElementType();

              // Construct an integer with the right value.
              unsigned EltSize = TD.getTypeSizeInBits(ValTy);
              APInt OneVal(EltSize, CI->getZExtValue());
              APInt TotalVal(OneVal);
              // Set each byte.
              for (unsigned i = 0; 8*i < EltSize; ++i) {
                TotalVal = TotalVal.shl(8);
                TotalVal |= OneVal;
              }

              // Convert the integer value to the appropriate type.
              StoreVal = ConstantInt::get(TotalVal);
              if (isa<PointerType>(ValTy))
                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
              else if (ValTy->isFloatingPoint())
                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
              assert(StoreVal->getType() == ValTy && "Type mismatch!");
              
              // If the requested value was a vector constant, create it.
              if (EltTy != ValTy) {
                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
                StoreVal = ConstantVector::get(&Elts[0], NumElts);
              }
            }
            new StoreInst(StoreVal, EltPtr, MI);
            continue;
          }
          // Otherwise, if we're storing a byte variable, use a memset call for
          // this element.
        }
      }
      
      // Cast the element pointer to BytePtrTy.
      if (EltPtr->getType() != BytePtrTy)
        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
    
      // Cast the other pointer (if we have one) to BytePtrTy. 
      if (OtherElt && OtherElt->getType() != BytePtrTy)
        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
                                   MI);
    
      unsigned EltSize = TD.getABITypeSize(EltTy);

      // Finally, insert the meminst for this element.
      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
        Value *Ops[] = {
          SROADest ? EltPtr : OtherElt,  // Dest ptr
          SROADest ? OtherElt : EltPtr,  // Src ptr
          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
          Zero  // Align
        };
        new CallInst(TheFn, Ops, Ops + 4, "", MI);
      } else {
        assert(isa<MemSetInst>(MI));
        Value *Ops[] = {
          EltPtr, MI->getOperand(2),  // Dest, Value,
          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
          Zero  // Align
        };
        new CallInst(TheFn, Ops, Ops + 4, "", MI);
      }
    }

    // Finally, MI is now dead, as we've modified its actions to occur on all of
    // the elements of the aggregate.
    ++UI;
    MI->eraseFromParent();
  }
}

/// HasPadding - Return true if the specified type has any structure or
/// alignment padding, false otherwise.
static bool HasPadding(const Type *Ty, const TargetData &TD,
                       bool inPacked = false) {
  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
    const StructLayout *SL = TD.getStructLayout(STy);
    unsigned PrevFieldBitOffset = 0;
    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);

      // Padding in sub-elements?
      if (HasPadding(STy->getElementType(i), TD, STy->isPacked()))
        return true;

      // Check to see if there is any padding between this element and the
      // previous one.
      if (i) {
        unsigned PrevFieldEnd =
        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
        if (PrevFieldEnd < FieldBitOffset)
          return true;
      }

      PrevFieldBitOffset = FieldBitOffset;
    }

    //  Check for tail padding.
    if (unsigned EltCount = STy->getNumElements()) {
      unsigned PrevFieldEnd = PrevFieldBitOffset +
                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
      if (PrevFieldEnd < SL->getSizeInBits())
        return true;
    }

  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
    return HasPadding(ATy->getElementType(), TD, false);
  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
    return HasPadding(VTy->getElementType(), TD, false);
  }
  return inPacked ?
    false : TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
}

/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
/// or 1 if safe after canonicalization has been performed.
///
int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
  // Loop over the use list of the alloca.  We can only transform it if all of
  // the users are safe to transform.
  AllocaInfo Info;
  
  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
       I != E; ++I) {
    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
    if (Info.isUnsafe) {
      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
      return 0;
    }
  }
  
  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
  // source and destination, we have to be careful.  In particular, the memcpy
  // could be moving around elements that live in structure padding of the LLVM
  // types, but may actually be used.  In these cases, we refuse to promote the
  // struct.
  if (Info.isMemCpySrc && Info.isMemCpyDst &&
      HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
    return 0;

  // If we require cleanup, return 1, otherwise return 3.
  return Info.needsCanon ? 1 : 3;
}

/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
/// allocation, but only if cleaned up, perform the cleanups required.
void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
  // At this point, we know that the end result will be SROA'd and promoted, so
  // we can insert ugly code if required so long as sroa+mem2reg will clean it
  // up.
  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
       UI != E; ) {
    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
    if (!GEPI) continue;
    gep_type_iterator I = gep_type_begin(GEPI);
    ++I;

    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
      uint64_t NumElements = AT->getNumElements();

      if (!isa<ConstantInt>(I.getOperand())) {
        if (NumElements == 1) {
          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
        } else {
          assert(NumElements == 2 && "Unhandled case!");
          // All users of the GEP must be loads.  At each use of the GEP, insert
          // two loads of the appropriate indexed GEP and select between them.
          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(), 
                              Constant::getNullValue(I.getOperand()->getType()),
             "isone", GEPI);
          // Insert the new GEP instructions, which are properly indexed.
          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
          Indices[1] = Constant::getNullValue(Type::Int32Ty);
          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
                                                 Indices.begin(),
                                                 Indices.end(),
                                                 GEPI->getName()+".0", GEPI);
          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
                                                Indices.begin(),
                                                Indices.end(),
                                                GEPI->getName()+".1", GEPI);
          // Replace all loads of the variable index GEP with loads from both
          // indexes and a select.
          while (!GEPI->use_empty()) {
            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
            LI->replaceAllUsesWith(R);
            LI->eraseFromParent();
          }
          GEPI->eraseFromParent();
        }
      }
    }
  }
}

/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
/// types are incompatible, return true, otherwise update Accum and return
/// false.
///
/// There are three cases we handle here:
///   1) An effectively-integer union, where the pieces are stored into as
///      smaller integers (common with byte swap and other idioms).
///   2) A union of vector types of the same size and potentially its elements.
///      Here we turn element accesses into insert/extract element operations.
///   3) A union of scalar types, such as int/float or int/pointer.  Here we
///      merge together into integers, allowing the xform to work with #1 as
///      well.
static bool MergeInType(const Type *In, const Type *&Accum,
                        const TargetData &TD) {
  // If this is our first type, just use it.
  const VectorType *PTy;
  if (Accum == Type::VoidTy || In == Accum) {
    Accum = In;
  } else if (In == Type::VoidTy) {
    // Noop.
  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
    // Otherwise pick whichever type is larger.
    if (cast<IntegerType>(In)->getBitWidth() > 
        cast<IntegerType>(Accum)->getBitWidth())
      Accum = In;
  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
    // Pointer unions just stay as one of the pointers.
  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
    if ((PTy = dyn_cast<VectorType>(Accum)) && 
        PTy->getElementType() == In) {
      // Accum is a vector, and we are accessing an element: ok.
    } else if ((PTy = dyn_cast<VectorType>(In)) && 
               PTy->getElementType() == Accum) {
      // In is a vector, and accum is an element: ok, remember In.
      Accum = In;
    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
      // Two vectors of the same size: keep Accum.
    } else {
      // Cannot insert an short into a <4 x int> or handle
      // <2 x int> -> <4 x int>
      return true;
    }
  } else {
    // Pointer/FP/Integer unions merge together as integers.
    switch (Accum->getTypeID()) {
    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
    case Type::X86_FP80TyID:  return true;
    case Type::FP128TyID: return true;
    case Type::PPC_FP128TyID: return true;
    default:
      assert(Accum->isInteger() && "Unknown FP type!");
      break;
    }
    
    switch (In->getTypeID()) {
    case Type::PointerTyID: In = TD.getIntPtrType(); break;
    case Type::FloatTyID:   In = Type::Int32Ty; break;
    case Type::DoubleTyID:  In = Type::Int64Ty; break;
    case Type::X86_FP80TyID:  return true;
    case Type::FP128TyID: return true;
    case Type::PPC_FP128TyID: return true;
    default:
      assert(In->isInteger() && "Unknown FP type!");
      break;
    }
    return MergeInType(In, Accum, TD);
  }
  return false;
}

/// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
/// as big as the specified type.  If there is no suitable type, this returns
/// null.
const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
  if (NumBits > 64) return 0;
  if (NumBits > 32) return Type::Int64Ty;
  if (NumBits > 16) return Type::Int32Ty;
  if (NumBits > 8) return Type::Int16Ty;
  return Type::Int8Ty;    
}

/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
/// single scalar integer type, return that type.  Further, if the use is not
/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
/// there are no uses of this pointer, return Type::VoidTy to differentiate from
/// failure.
///
const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
  const TargetData &TD = getAnalysis<TargetData>();
  const PointerType *PTy = cast<PointerType>(V->getType());

  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    Instruction *User = cast<Instruction>(*UI);
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      if (MergeInType(LI->getType(), UsedType, TD))
        return 0;
      
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      // Storing the pointer, not into the value?
      if (SI->getOperand(0) == V) return 0;
      
      // NOTE: We could handle storing of FP imms into integers here!
      
      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
        return 0;
    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
      IsNotTrivial = true;
      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      // Check to see if this is stepping over an element: GEP Ptr, int C
      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
        unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
        unsigned BitOffset = Idx*ElSize*8;
        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
        
        IsNotTrivial = true;
        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
        if (SubElt == 0) return 0;
        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
          const Type *NewTy = 
            getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
          continue;
        }
      } else if (GEP->getNumOperands() == 3 && 
                 isa<ConstantInt>(GEP->getOperand(1)) &&
                 isa<ConstantInt>(GEP->getOperand(2)) &&
                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
        // We are stepping into an element, e.g. a structure or an array:
        // GEP Ptr, int 0, uint C
        const Type *AggTy = PTy->getElementType();
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
        
        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
          // Getting an element of the vector.
          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.

          // Merge in the vector type.
          if (MergeInType(VectorTy, UsedType, TD)) return 0;
          
          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
          if (SubTy == 0) return 0;
          
          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
            return 0;

          // We'll need to change this to an insert/extract element operation.
          IsNotTrivial = true;
          continue;    // Everything looks ok
          
        } else if (isa<StructType>(AggTy)) {
          // Structs are always ok.
        } else {
          return 0;
        }
        const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
        if (SubTy == 0) return 0;
        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
          return 0;
        continue;    // Everything looks ok
      }
      return 0;
    } else {
      // Cannot handle this!
      return 0;
    }
  }
  
  return UsedType;
}

/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
/// predicate and is non-trivial.  Convert it to something that can be trivially
/// promoted into a register by mem2reg.
void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
       << *ActualTy << "\n";
  ++NumConverted;
  
  BasicBlock *EntryBlock = AI->getParent();
  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
         "Not in the entry block!");
  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
  
  // Create and insert the alloca.
  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
                                     EntryBlock->begin());
  ConvertUsesToScalar(AI, NewAI, 0);
  delete AI;
}


/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
/// directly.  This happens when we are converting an "integer union" to a
/// single integer scalar, or when we are converting a "vector union" to a
/// vector with insert/extractelement instructions.
///
/// Offset is an offset from the original alloca, in bits that need to be
/// shifted to the right.  By the end of this, there should be no uses of Ptr.
void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
  const TargetData &TD = getAnalysis<TargetData>();
  while (!Ptr->use_empty()) {
    Instruction *User = cast<Instruction>(Ptr->use_back());
    
    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
      // The load is a bit extract from NewAI shifted right by Offset bits.
      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
      if (NV->getType() == LI->getType()) {
        // We win, no conversion needed.
      } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
        // If the result alloca is a vector type, this is either an element
        // access or a bitcast to another vector type.
        if (isa<VectorType>(LI->getType())) {
          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
        } else {
          // Must be an element access.
          unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
          NV = new ExtractElementInst(
                         NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
        }
      } else if (isa<PointerType>(NV->getType())) {
        assert(isa<PointerType>(LI->getType()));
        // Must be ptr->ptr cast.  Anything else would result in NV being
        // an integer.
        NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
      } else {
        const IntegerType *NTy = cast<IntegerType>(NV->getType());

        // If this is a big-endian system and the load is narrower than the
        // full alloca type, we need to do a shift to get the right bits.
        int ShAmt = 0;
        if (TD.isBigEndian()) {
          // On big-endian machines, the lowest bit is stored at the bit offset
          // from the pointer given by getTypeStoreSizeInBits.  This matters for
          // integers with a bitwidth that is not a multiple of 8.
          ShAmt = TD.getTypeStoreSizeInBits(NTy) -
            TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
        } else {
          ShAmt = Offset;
        }

        // Note: we support negative bitwidths (with shl) which are not defined.
        // We do this to support (f.e.) loads off the end of a structure where
        // only some bits are used.
        if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
          NV = BinaryOperator::createLShr(NV, 
                                          ConstantInt::get(NV->getType(),ShAmt),
                                          LI->getName(), LI);
        else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
          NV = BinaryOperator::createShl(NV, 
                                         ConstantInt::get(NV->getType(),-ShAmt),
                                         LI->getName(), LI);
        
        // Finally, unconditionally truncate the integer to the right width.
        unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
        if (LIBitWidth < NTy->getBitWidth())
          NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
                             LI->getName(), LI);
        
        // If the result is an integer, this is a trunc or bitcast.
        if (isa<IntegerType>(LI->getType())) {
          assert(NV->getType() == LI->getType() && "Truncate wasn't enough?");
        } else if (LI->getType()->isFloatingPoint()) {
          // Just do a bitcast, we know the sizes match up.
          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
        } else {
          // Otherwise must be a pointer.
          NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
        }
      }
      LI->replaceAllUsesWith(NV);
      LI->eraseFromParent();
    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
      assert(SI->getOperand(0) != Ptr && "Consistency error!");

      // Convert the stored type to the actual type, shift it left to insert
      // then 'or' into place.
      Value *SV = SI->getOperand(0);
      const Type *AllocaType = NewAI->getType()->getElementType();
      if (SV->getType() == AllocaType) {
        // All is well.
      } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);

        // If the result alloca is a vector type, this is either an element
        // access or a bitcast to another vector type.
        if (isa<VectorType>(SV->getType())) {
          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
        } else {
          // Must be an element insertion.
          unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
          SV = new InsertElementInst(Old, SV,
                                     ConstantInt::get(Type::Int32Ty, Elt),
                                     "tmp", SI);
        }
      } else if (isa<PointerType>(AllocaType)) {
        // If the alloca type is a pointer, then all the elements must be
        // pointers.
        if (SV->getType() != AllocaType)
          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
      } else {
        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);

        // If SV is a float, convert it to the appropriate integer type.
        // If it is a pointer, do the same, and also handle ptr->ptr casts
        // here.
        unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
        unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
        unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
        unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
        if (SV->getType()->isFloatingPoint())
          SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
                               SV->getName(), SI);
        else if (isa<PointerType>(SV->getType()))
          SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
                 
        // Always zero extend the value if needed.
        if (SV->getType() != AllocaType)
          SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);

        // If this is a big-endian system and the store is narrower than the
        // full alloca type, we need to do a shift to get the right bits.
        int ShAmt = 0;
        if (TD.isBigEndian()) {
          // On big-endian machines, the lowest bit is stored at the bit offset
          // from the pointer given by getTypeStoreSizeInBits.  This matters for
          // integers with a bitwidth that is not a multiple of 8.
          ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
        } else {
          ShAmt = Offset;
        }

        // Note: we support negative bitwidths (with shr) which are not defined.
        // We do this to support (f.e.) stores off the end of a structure where
        // only some bits in the structure are set.
        APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
        if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
          SV = BinaryOperator::createShl(SV, 
                                         ConstantInt::get(SV->getType(), ShAmt),
                                         SV->getName(), SI);
          Mask <<= ShAmt;
        } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
          SV = BinaryOperator::createLShr(SV,
                                         ConstantInt::get(SV->getType(),-ShAmt),
                                          SV->getName(), SI);
          Mask = Mask.lshr(ShAmt);
        }
        
        // Mask out the bits we are about to insert from the old value, and or
        // in the new bits.
        if (SrcWidth != DestWidth) {
          assert(DestWidth > SrcWidth);
          Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask),
                                          Old->getName()+".mask", SI);
          SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
        }
      }
      new StoreInst(SV, NewAI, SI);
      SI->eraseFromParent();
      
    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
       ConvertUsesToScalar(CI, NewAI, Offset);
      CI->eraseFromParent();
    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
      const PointerType *AggPtrTy = 
        cast<PointerType>(GEP->getOperand(0)->getType());
      const TargetData &TD = getAnalysis<TargetData>();
      unsigned AggSizeInBits =
        TD.getABITypeSizeInBits(AggPtrTy->getElementType());

      // Check to see if this is stepping over an element: GEP Ptr, int C
      unsigned NewOffset = Offset;
      if (GEP->getNumOperands() == 2) {
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
        unsigned BitOffset = Idx*AggSizeInBits;
        
        NewOffset += BitOffset;
      } else if (GEP->getNumOperands() == 3) {
        // We know that operand #2 is zero.
        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
        const Type *AggTy = AggPtrTy->getElementType();
        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
          unsigned ElSizeBits =
            TD.getABITypeSizeInBits(SeqTy->getElementType());

          NewOffset += ElSizeBits*Idx;
        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
          unsigned EltBitOffset =
            TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
          
          NewOffset += EltBitOffset;
        } else {
          assert(0 && "Unsupported operation!");
          abort();
        }
      } else {
        assert(0 && "Unsupported operation!");
        abort();
      }
      ConvertUsesToScalar(GEP, NewAI, NewOffset);
      GEP->eraseFromParent();
    } else {
      assert(0 && "Unsupported operation!");
      abort();
    }
  }
}


/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
/// some part of a constant global variable.  This intentionally only accepts
/// constant expressions because we don't can't rewrite arbitrary instructions.
static bool PointsToConstantGlobal(Value *V) {
  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    return GV->isConstant();
  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    if (CE->getOpcode() == Instruction::BitCast || 
        CE->getOpcode() == Instruction::GetElementPtr)
      return PointsToConstantGlobal(CE->getOperand(0));
  return false;
}

/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
/// track of whether it moves the pointer (with isOffset) but otherwise traverse
/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
/// the alloca, and if the source pointer is a pointer to a constant  global, we
/// can optimize this.
static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
                                           bool isOffset) {
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
    if (isa<LoadInst>(*UI)) {
      // Ignore loads, they are always ok.
      continue;
    }
    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
      // If uses of the bitcast are ok, we are ok.
      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
        return false;
      continue;
    }
    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
      // doesn't, it does.
      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
                                         isOffset || !GEP->hasAllZeroIndices()))
        return false;
      continue;
    }
    
    // If this is isn't our memcpy/memmove, reject it as something we can't
    // handle.
    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
      return false;

    // If we already have seen a copy, reject the second one.
    if (TheCopy) return false;
    
    // If the pointer has been offset from the start of the alloca, we can't
    // safely handle this.
    if (isOffset) return false;

    // If the memintrinsic isn't using the alloca as the dest, reject it.
    if (UI.getOperandNo() != 1) return false;
    
    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
    
    // If the source of the memcpy/move is not a constant global, reject it.
    if (!PointsToConstantGlobal(MI->getOperand(2)))
      return false;
    
    // Otherwise, the transform is safe.  Remember the copy instruction.
    TheCopy = MI;
  }
  return true;
}

/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
/// modified by a copy from a constant global.  If we can prove this, we can
/// replace any uses of the alloca with uses of the global directly.
Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
  Instruction *TheCopy = 0;
  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
    return TheCopy;
  return 0;
}

Generated by  Doxygen 1.6.0   Back to index